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The Critical Issues in Diesel Reforming Catalyst & 
Catalytic System Development

• Cost
- Costly Rh usage

• Activity
- ATR, POX or SR?
- Efficiency & Selectivity
- Fuel property & chemistry

• Durability
- Metal vaporization & agglomeration
- Support stability 
- Sulfur poisoning
- Coke formation
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• Fuel injection & mixing
• Reactor components
• System integration
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Examples of Diesel Hydrocarbon Components
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Diesel Reforming Catalyst 
Development
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Approach: Development of Perovskite Based Catalyst

• The Perovskite Catalyst…
- Low cost material. 
- Stable under high temperature & redox environment.
- Exchangeable A & B site for activity improvement & metal dispersion.

A 
B Perovskite ABO3 Structure

Conductivities of both e- and O2- of perovskite expand the catalytic active 
site through electron and oxygen vacancy transfers in a redox process. 

CxHy CO, CO2

H2

e- e-

H2H2O, O2

Redox Cycle



6

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Diesel Catalyst Development: Test Apparatus & 
Conditions

• Fuel
- Dodecane C12H26

- Dodecane/Dibenzothiophene (50 ppm S)
- Dodecane/1-Methylnapthlene (5%)

• Catalyst
- Ru doped Chromite & Aluminite
- Combustion method

• Microreactor
- Temperature:  700 °C to 800 °C
- Preheating: 200 °C
- GC analysis for reformate products

• Reforming Input Mixture
- ATR: O2/C = 0.3 ~0.5, H2O/C = 1 ~ 3 

• Space Velocity
- Fuel Flow Rate = 2.8x10-3 gfuel/gCat•sec
- GHSV = 50 K ~ 100 K hr-1

Diesel Reforming Catalyst Test Plant
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Diesel Catalyst Development: Test Plant
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Diesel ATR Catalyst Development – H2 Yield and COx
Selectivity of Some Representative Samples
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Diesel ATR Catalyst Development – H2 Yield as 
Function of O2/C and H2O/C
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The hydrogen yield as the function of O2/C during the 
reforming over La0.8Sr0.2Cr0.95Ru0.05O3,  H2O/C = 1.0

The hydrogen yield as the function of H2O/C during 
the reforming over La0.8Sr0.2Cr0.95Ru0.05O3, O2/C = 0.5 

Ru doped chromite and aluminite are also excellent steam 
reforming catalysts! 
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Diesel ATR Catalyst Development – Optimize Activity 
through Synthesis & Characterization

• Forming highly dispersed active 
site through self-combustive 
powder formation method.

• Modification of redox behavior and 
lattice structure through A & B site 
substitution.

• Improve catalytic surface area and 
activity through calcination
temperature.  

A-site

Oxygen

B-site (Ru)

A-site

Oxygen

B-site (Ru)

Lattice Structure of a Single Cell in 
Perovskite
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EXAFS analysis on Ru in chromite
identified structural difference for catalysts 

prepared under different condition



11

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Diesel ATR Catalyst Development – Optimize Activity 
through Synthesis & Characterization
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• Ru imbedded near perovskite surface via lattice defects is the active site. 
• Redox mechanism involves Ru+3 to Ru0 transition.
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Diesel ATR Catalyst Development – Investigation on 
Sulfur Catalytic Poisoning

Catalyst re-activates after S is removed from fuel. 

Introducing 50 ppm sulfur in the form of 
DBT temporarily suppress reforming 
efficiency and COx selectivity.

S

DBT

4-MDBT

4,6-DMDBT

S

S

Dibenzothiophene (DBT) and its derivatives 
are difficult to be removed from diesel 
through HDS process …
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Diesel ATR Catalyst Development – Impact of Sulfur 
Tolerance at Higher Operating Temperature
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Increase reaction temperature by 100 °C significantly 
improved catalytic performance in the presence of sulfur 
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Diesel ATR Catalyst Development – 100 Hr Aging Test 
in the Presence of Sulfur

Yields of hydrogen and carbon monoxide 
(both are SOFC fuels) also maintained 
constant during the study.

Little changes observed in reforming 
efficiency and COx selectivity throughout 
the test…
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Excellent catalytic stability was observed during 100 
hour aging test with S contaminated fuel 
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Diesel ATR Catalyst Development – Investigation on 
Deactivation by Polyaromatics

• Challenges of PAH in Diesel 
Reforming
- Low cetane number
- Low ignition temperature
- Cause for carbon formation
- Difficult to reform 

• Impact on ATR reforming by 1-
methylnaphthalene (1MN)

Long resident time and slow decomposition 
of PAH over active site reduce reaction rate!
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O2/C & H2O/C have limited impact.
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Diesel ATR Catalyst Development – Summary

• Ru doped chromites and aluminites demonstrate excellent 
catalytic reforming activities comparing with Rh based 
catalysts.

• Active catalysts are the perovskites containing Ru at B site 
with high oxygen vacancy and high surface area.

• The sulfur tolerance of the catalyst can be improved through 
higher operating temperature. Good catalytic stability was 
demonstrated in 100 hour aging test.

• Polyaromatics can temporarily deactivate catalytic activity 
thus needs to be addressed.
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Diesel Fuel Mixing Study
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The Challenges Facing Fuel Mixing

• Diesel fuel cannot be 
evaporated

• Incomplete mixing 
creates “hot spots” on 
the catalyst and leads to 
coke formation

• Pre-heating the air 
appears to prevent pre-
ignition

Air

Diesel

Recyc.
Exhaust

reformate
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Approach to Mixing Challenge

• Joint effort between ANL and International 
Truck and Engine Corporation (ITEC)

- ITEC provides diesel-fuel injectors and fuel-injection 
control system

- ANL will establish a test facility, develop a 
fuel/exhaust-gas mixing system, and conduct tests to 
evaluate the ANL autothermal reforming process. 
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Fuel-air-steam Mixing Facility
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• Pulsed injection with pulse rate of

10 ~ 70 Hz (500 ~ 4000 rpm for 4-cylinder engine)

• Injection duration

Below 1 ms at idle to 20 ms at high load

• Injection nozzles

6 holes around

• Fuel injection rate
Peak Torque: 105 mm3/stroke at 240 bar and 600 rpm

Idle Single Shot 9.2 mm3/stroke at 45 bar and 600 rpm

ITEC Diesel Fuel Injector
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Fuel Injection Test Chamber
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Test Matrix 

• Test variables
- Exhaust-gas-fuel ratio (O/C : 0.4, Steam/C : 1.0)
- Exhaust-gas temperature (300 deg. C)

- Exhaust-gas water content (10%)

- Mixing configuration

• Proposed measurements
- Flow rates (exhaust gas and fuel)
- Temperatures (fuel, exhaust-gas, and mixing region)

- Fuel mist characterization

- Carbon deposit 

- Humidity

- Pressure
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